Mechanical energy fluctuations during walking of healthy and ACL reconstructed subjects

Sławomir Winiarski
University School of Physical Education, Wrocław; Biomechanics Dep.

Metabolic Cost of Walking

- (a) Metabolic power (W)
 - slow walking is very economical, up to about 2 m/s
 - minimum energy usage at intermediate walking speed, indicating optimum efficiency for gait

- (b) Economy (J m^-1)
 - Walking is very energy-efficient, because of various mechanisms that ensure the mechanical energy the body has is passed on from one step to the next
Sources of Energy

1. Metabolic energy

\[E = b + m \cdot v^2 = 32 + 0.0050 \cdot v^2 \]

Ralston (1958) Bobbert (1960)

\[E = \frac{E_0}{\left(1 - \frac{v^2}{v_0^2}\right)\left(1 - \frac{f^2}{f_0^2}\right)\left(1 - \frac{\omega^2}{\omega_0^2}\right)} \approx \frac{E_0}{\left(1 - \frac{v}{v_0}\right)^2} \]

Zarrugh (1974)

2. Mechanical energy

4 forms of Mechanical Energy:
- Gravitational potential \(m \cdot g \cdot y \)
- Elastic potential \(\frac{1}{2} k \cdot s^2 \)
- Translational kinetic \(\frac{1}{2} m \cdot v^2 \)
- Rotational kinetic \(\frac{1}{2} I \cdot \omega^2 \)

Total mechanical energy is sum of all four

Elastic potential energy is usually omitted because it cannot be measured accurately

- Cavagna et al., 1977; Cavagna and Margaria, 1966.
- Griffin (1999) Walking in simulated reduced gravity: mechanical energy fluctuations and exchange
Gait Mechanism: an Overview

- Pendulum-like movements of the limbs give rise to two phases: swing & stance;
- The forward momentum of the body gives it the necessary initial angular velocity of rotation;
- "Inverted" pendulum action also involves inter-conversion of potential and kinetic energy, but in this case (unlike a conventional pendulum) KE reaches a minimum at the midpoint of the motion, and PE is highest at that point;
- When reaching the endpoint of its "inverted swing" the stance leg does not swing back, as a real inverted pendulum would, because the foot is taken off the floor, the fulcrum transfers from the foot to the hip, and the leg swings again as a conventional pendulum.
- The legs move as conventional pendulums during the swing (with a little assistance from the hip flexors);
- This reduces the amount of muscle energy needed to move the swinging leg forward;
- Although the legs swing forwards much like pendulums, they are prevented from swinging backwards by footstrike;

Total Mechanical Energy Estimation - Methods

- Body Segment Energy Method (Multiple Rigid Body Method) Sum of all segmental total mechanical energies (Es)
 \[E_{total} = \sum E_s = \sum \left[m_i \cdot g \cdot y_i + \frac{1}{2} m_i \cdot v_i^2 + \frac{1}{2} I_i \cdot \omega_i^2 \right] \]
- Body Center of Gravity Method (Single Rigid Body Method)
 \[E_{total} = M \cdot g \cdot y_{cog} + \frac{1}{2} M \cdot v_{cog}^2 \]
- Inverse Dynamics and Joint Power Analysis Method Integral of Power with respect of Time

Relation to Other Mechanical Variables

- **External Work** = change in body total mechanical energy:
 \[W_{ext} = \Delta E_{total} = E_{total}(t_{final}) - E_{total}(t_{initial}) \]

- **Internal Work** = mechanical cost of moving the limbs during a cyclic motion; energy transfer from segment to segment;
 \[W_{int} = \sum |\Delta E_{total}| - W_{ext} \]

Energy Transfer Between Segments

Fig. 1. Energy of leg and HAT segments of the body during level overground walking. Total body energy reflects exchanges of energy between segments. See text for detailed discussion.

Fig. 2. Potential and translational kinetic energies of body’s center of mass during overground walking. Center of mass reflects to a certain extent the kind of energy changes that are occurring within and between segments.

Aim of Work

- to explore the possibilities of employing the total mechanical energy into estimating the mechanical cost of transport in normal and pathological human gait

Material

- total of 130 bare-foot subjects
 - 53 male (age 31.5±9.7);
 - 23 male (age 22.1±3.2);

Test Group - patients after ACL-reconstruction following physiotherapy process

Control Group - with no visible locomotor impairment

Test patients underwent original physiotherapy process [Czamara, 2002] after the isolated ACL reconstruction, which involved harvesting the tendon graft (ST or GR) and rigid fixation.

Three Stages of physiotherapy process:
1. 2–4 weeks postoperatively;
2. 5–8 weeks postoperatively;
3. 9–12 weeks postoperatively;
Instrumentation

SIMI Motion Analysis System (Simi Reality Motion Systems GmbH, Unterschleissheim, Germany)

Anthropometric Model

- Clauser’s Model
 - 14 rigid segments

Data Analysis

1. Registering the positions of CoG for each segment;
2. Calculating the position of BCoG for every frame;
3. Calculating the height and speed of BCoG;
4. Calculating the potential and horizontal kinetic energy of BCoG;
5. Normalization

\[
E_{\text{norm}}^\text{pot} = \frac{mg \cdot h_{\text{BCoG}}}{m \cdot g \cdot L} = h_{\text{BCoG}}^\text{norm}
\]

\[
E_{\text{norm}}^\text{kin} = \frac{0.5 \cdot m \cdot v_{\text{BCoG}}^2}{m \cdot g \cdot L} = \frac{v_{\text{BCoG}}^2}{2gL}
\]

\[
E_{\text{total}}^\text{norm} = E_{\text{pot}}^\text{norm} + E_{\text{kin}}^\text{norm} = h_{\text{BCoG}}^\text{norm} + \frac{v_{\text{BCoG}}^2}{2gL}
\]

Hof (1996); Sutherland (1996); Stansfield i wsp. (2001); Stansfield i wsp. (2006)

Data Evaluation
Results

- Potential energy, mean±SD, men

Normal (reference) group ACL-reconstructed group Stage 1

Potential Energy, mean±SD, men

Results

- Potential Energy in physiotherapy process
Results

- Kinetic Energy, mean±SD, men

<table>
<thead>
<tr>
<th>% Gait Cycle</th>
<th>Normal (reference) group</th>
<th>ACL-reconstructed group</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,0355</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,0360</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,0365</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,0370</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,0375</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,0380</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,0385</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Results

- Kinetic Energy in physiotherapy process

<table>
<thead>
<tr>
<th>% Gait Cycle</th>
<th>ACL 1</th>
<th>ACL 2</th>
<th>ACL 3</th>
<th>C G</th>
</tr>
</thead>
<tbody>
<tr>
<td>0,000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,005</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,010</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,015</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,020</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,025</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,030</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,035</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,040</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Conclusions

- Normal energy curves similar to Winter (1979), Griffin (1999) and Gider et al. (1995);
- Kinetic Energy is ca. 9 times lower than Potential Energy for the Control Group;
- Potential Energy, Kinetic Energy and Total Mechanical Energy rise during physiotherapy process;
- Potential Energy is rising during physiotherapy process due to rising amplitude of BCoG trajectory;
- Potential Energy on stage 3 of physiotherapy is significantly lower than in control group;
- Mechanical Cost is lower for ACL-reconstructed group than for control group;
- On the stage 3 of physiotherapy Mechanical Cost is still lower than in control group due to the significant lower amplitude of BCoG trajectory;